Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Biochem ; 115: 22-32, 2023 May.
Article in English | MEDLINE | ID: covidwho-2313796

ABSTRACT

Recent studies evaluating the preanalytical factors that impact the outcome of nucleic-acid based methods for the confirmation of SARS-CoV-2 have illuminated the importance of identifying variables that promoted accurate testing, while using scarce resources efficiently. The majority of laboratory errors occur in the preanalytical phase. While there are many resources identifying and describing mechanisms for main laboratory testing on automated platforms, there are fewer comprehensive resources for understanding important preanalytical and environmental factors that affect accurate molecular diagnostic testing of infectious diseases. This review identifies evidence-based factors that have been documented to impact the outcome of nucleic acid-based molecular techniques for the diagnosis of infectious diseases.


Subject(s)
COVID-19 , Clinical Laboratory Techniques , Humans , Clinical Laboratory Techniques/methods , Specimen Handling , COVID-19/diagnosis , SARS-CoV-2 , Pre-Analytical Phase , COVID-19 Testing
2.
Biochem Med (Zagreb) ; 31(2): 020710, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1278714

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has posed several challenges to clinical laboratories across the globe. Amidst the outbreak, errors occurring in the preanalytical phase of sample collection, transport and processing, can further lead to undesirable clinical consequences. Thus, this study was designed with the following objectives: (i) to determine and compare the blood specimen rejection rate of a clinical laboratory and (ii) to characterise and compare the types of preanalytical errors between the pre-pandemic and the pandemic phases. MATERIALS AND METHODS: This retrospective study was carried out in a trauma-care hospital, presently converted to COVID-19 care centre. Data was collected from (i) pre-pandemic phase: 1st October 2019 to 23rd March 2020 and (ii) pandemic phase: 24th March to 31st October 2020. Blood specimen rejection rate was calculated as the proportion of blood collection tubes with preanalytical errors out of the total number received, expressed as percentage. RESULTS: Total of 107,716 blood specimens were screened of which 43,396 (40.3%) were received during the pandemic. The blood specimen rejection rate during the pandemic was significantly higher than the pre-pandemic phase (3.0% versus 1.1%; P < 0.001). Clotted samples were the commonest source of preanalytical errors in both phases. There was a significant increase in the improperly labelled samples (P < 0.001) and samples with insufficient volume (P < 0.001), whereas, a significant decline in samples with inadequate sample-anticoagulant ratio and haemolysed samples (P < 0.001). CONCLUSION: In the ongoing pandemic, preanalytical errors and resultant blood specimen rejection rate in the clinical laboratory have significantly increased due to changed logistics. The study highlights the need for corrective steps at various levels to reduce preanalytical errors in order to optimise patient care and resource utilisation.


Subject(s)
Blood Specimen Collection/methods , COVID-19/diagnosis , Pre-Analytical Phase , Blood Specimen Collection/instrumentation , COVID-19/epidemiology , COVID-19/virology , Diagnostic Errors , Humans , Laboratories, Hospital/standards , Pandemics , Retrospective Studies , SARS-CoV-2/isolation & purification
3.
Ann Biol Clin (Paris) ; 78(6): 609-616, 2020 Dec 01.
Article in French | MEDLINE | ID: covidwho-999891

ABSTRACT

Confronted with the COVID-19 crisis, healthcare professionals have had to tackle an epidemic crisis of a huge magnitude for which they were not prepared. Medical laboratories have been on the front line, from collecting samples to performing the analysis required to diagnose this new pathology. Responding to the needs and to the urgency of the situation, the authorities relied on the network of private laboratories. In France, private laboratory medicine represents 70% of overall activity, and with a network of more than 4,000 local laboratories, private laboratory medicine has been the cornerstone of the « screen-trace-isolate ¼ strategy. This article gives feedback from private laboratory medicine professionals, directly involved in the reorganization carried out at the pre-analytical, analytical and post-analytical stages, during the crisis from March to October 2020.


Subject(s)
COVID-19/epidemiology , Clinical Laboratory Services/organization & administration , Pandemics , Private Sector/organization & administration , Specimen Handling/standards , COVID-19/diagnosis , Clinical Laboratory Services/standards , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Cross Infection/epidemiology , Cross Infection/prevention & control , Equipment Safety/methods , Equipment Safety/standards , France/epidemiology , Hospital Units/organization & administration , Humans , Intersectoral Collaboration , Medical Staff/organization & administration , Medical Staff/standards , Patient Safety/standards , Pre-Analytical Phase/methods , Pre-Analytical Phase/standards , Private Sector/standards , SARS-CoV-2/isolation & purification , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL